Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(4): 844-852, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38357725

RESUMO

This study aimed to evaluate torque production in response to the application of a brief muscle lengthening during neuromuscular electrical stimulation (NMES) applied over the posterior tibial nerve. Fifteen participants took part in three experimental sessions, where wide-pulse NMES delivered at 20 and 100 Hz (pulse duration of 1 ms applied during 15 s at an intensity evoking 5-10% of maximal voluntary contraction) was either applied alone (NMES condition) or in combination with a muscle lengthening at three distinct speeds (60, 180, or 300°/s; NMES + LEN condition). The torque-time integral (TTI) and the muscle activity following the stimulation trains [sustained electromyography (EMG)] were calculated for each condition. Results show that TTI and sustained EMG activity were higher for the NMES + LEN condition only when using 100-Hz stimulation, regardless of the lengthening speed (P = 0.029 and P = 0.007 for the two parameters, respectively). This indicates that superimposing a muscle lengthening to high-frequency NMES can enhance the total torque production, partly due to neural mechanisms, as evidenced by the higher sustained EMG activity. This finding has potential clinical relevance, especially when it comes to finding ways to enhance torque production to optimize the effectiveness of NMES training programs.NEW & NOTEWORTHY This study showed, for the first time, that the combined application of a brief muscle lengthening and wide-pulse neuromuscular electrical stimulation (NMES) delivered over the posterior tibial nerve can entail increased torque production as compared with the sole application of NMES. This observation, present only for high stimulation frequencies (100 Hz) and independently of the lengthening speed, is attributed to neural mechanisms, most probably related to increased afferents' solicitation, although muscular phenomena cannot be excluded.


Assuntos
Fadiga Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Torque , Eletromiografia/métodos , Estimulação Elétrica/métodos , Fadiga Muscular/fisiologia , Contração Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...